Future SK-Experiments

Michael Smy UC Irvine

the state of the s

S-Japan Seminar 'ββ Decay and v Mass' Kapalua, Maui, September 2005

and a store

Solar Neutrinos

Michael Smy, UC Irvine

Solar MSW-Vacuum Transition

Courtesy of M. Nakahata, ICRR

~20% in SNO and ~10% in SK distortion is expected from 4 MeV to 15 MeV

Courtesy of M. Nakahata, ICRR

Atmospheric Neutrinos

L/E Oscillation Analysis
Three Flavor Oscillations
Appearance of τ leptons

Michael Smy, UC Irvine

Similar plot with this selected subset: (~2700 events)

Look for Non-Zero θ_{13} in Enhancement of v_e for some Angles/Energies

Normal hierarchy: resonance for neutrinos

 $\Delta m^2 = 0.003 \, eV^2$, $\sin^2 \theta_{23} = 0.5$, $\sin^2 \theta_{13} = 0.026$

Enhancement of Upgoing Multi-GeV Single Ring Electrons

Single-ring electrons (2.5<P<5.0GeV)

Courtesy of K. Scholberg, Duke University

Accelerator Neutrinos

$$\begin{aligned} \mathbf{T2K: Search for } v_{\mu} \rightarrow v_{e} \xrightarrow{P} v_{e} \operatorname{Appearance}_{P(\nu_{\mu} \rightarrow \nu_{e})} = \underbrace{4C_{13}^{2}S_{12}^{2}S_{23}^{2}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2S_{13}^{2}\right)\right)}_{+8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}_{4E}} \operatorname{Main}_{4E} \\ +8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}_{4E}} \operatorname{CP-odd}_{+4S_{12}^{2}C_{12}^{2}}\left\{C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta\right\}\sin^{2}\frac{\Delta m_{21}^{2}L}{4E}} \operatorname{Solar}_{-8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}}\sin\frac{\Delta m_{31}^{2}L}{4E}\frac{aL}{4E}}\left(1 - 2S_{13}^{2}\right)} \operatorname{Matter}_{2S_{13}^{2}}\left\{S_{23}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}}\sin\frac{\Delta m_{31}^{2}L}{4E}}{4E}\left(1 - 2S_{13}^{2}\right)}\right\} \operatorname{Matter}_{2S_{13}^{2}}\left\{S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}}\sin\frac{\Delta m_{31}^{2}L}{4E}}{2S_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}}\sin\frac{\Delta m_{31}^{2}L}{4E}} + \frac{aL}{4E}}\left(1 - 2S_{13}^{2}\right)\right\} \operatorname{Matter}_{2S_{13}^{2}}\left\{S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}}\sin\frac{\Delta m_{31}^{2}L}{4E}}\right\} \operatorname{Matter}_{2S_{13}^{2}}\left\{S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}}\sin\frac{\Delta m_{31}^{2}L}{4E}} + \frac{aL}{4E}}\left(1 - 2S_{13}^{2}\right)\right\}$$

Courtesy of T. Kobayashi, KEK

#

- $(0.75 \text{MW} \rightarrow)4 \text{MW} 50 \text{GeV} \text{PS} @ \text{J-PARC}$
- Off-axis (OA) 2~3⁰: E_v^{peak}=0.5~0.8GeV
- L=295km

Courtesy of T. Kobayashi, KEK

Sensitivity for θ_{13}

Courtesy of T. Kobayashi, KEK

Supernova/Reactor Neutrinos

- Rests on Identification of Antineutrinos
- Beacom/Vagins: Neutrons from inverse β reaction capture on <u>dissolved</u> Gadolinium and produce <u>detectable</u> γ cascade (i.e. enough Č-light for SK)
- Needs very low threshold
- Feasibility study: detector corrosion, water purification, water transparency
- MC simulation of reactor neutrino interactions

Neutron Detection in SK: 0.1% GdCl₃

IN/dE_e [(22.5 kton) yr MeV]⁻¹

"Super-KamLAND" could collect this much data in two weeks

		<u> </u>		
Data	$99\%~{\rm CL}$	$99\%~{\rm CL}$	$99\%~{\rm CL}$	$99\%~{\rm CL}$
set	range of	spread	range	spread
used	$\Delta m^2_{21} imes$	of	of	in
	$10^{-5}\mathrm{eV^2}$	Δm^2_{21}	$\sin^2 \theta_{12}$	$\sin^2\theta_{12}$
only solar	3.2 - 14.9	65%	0.22 - 0.37	25%
solar $+162$ Ty KL	5.2 - 9.8	31%	0.22 - 0.37	25%
solar with future SNO	3.3 - 11.9	57%	0.22 - 0.34	21%
solar+1 kTy KL(low-LMA)	6.5 - 8.0	10%	0.23 - 0.37	23%
solar+2.6 kTy KL(low-LMA)	6.7 - 7.7	7%	0.23 - 0.36	22%
solar with future SNO+1.3 kTy KL (low-LMA) $$	6.7 - 7.8	8%	0.24 - 0.34	17%
3 yrs SK-Gd	7.2 - 7.4	1.4%	0.25 - 0.37	19%
5 yrs SK-Gd	7.0 - 7.3	< 1%	0.26 - 0.35	15%
solar+3 yrs SK-Gd(low-LMA)	7.0 - 7.4	3%	0.25 - 0.34	15%
solar+3 yrs SK-Gd(high-LMA)	14.5 - 15.4	3%	0.24 - 0.37	21%
solar with future SNO+3 yrs SK-Gd(low-LMA)	7.0 - 7.4	3%	0.25 - 0.335	14%
solar with future SNO+3 yrs SK-Gd(high-LMA)	14.5 - 15.4	3%	0.24 - 0.35	19%
3 yrs SK-Gd with Kashiwazaki "down"	6.8 - 7.6	6%	0.23 - 0.40	27%
7 yrs SK-Gd with only Shika-2 "up"	7.0 - 7.3	< 1%	0.28 - 0.32	6.7%

Choubey and Petcov consider the reactor signal of SK-Gd

Table 1: The range of parameter values allowed at 99% C.L. and their corresponding spread.

Gd MC: Input Spectrum

Event Reconstruction

Michael Smy, UC Irvine

Shape of Gd Events

- Reconstructed Cherenkov Angle
- Disadvantage: already used as a "guideline" for the vertex reconstruction (of only e⁺) i.e. distribution uses prior knowledge

- "Patlik" variable to remove residual $\beta\gamma$ spallation events from solar ν sample
- Disadvantage: needs direction from low energy direction fit, which assumes a single e-like Cherenkov Ring

New Super-K-Water Purification System

Courtesy of M. Vagins, UCI

October 2005: Test using K2K's Near Detector

K2K's 1 kiloton tank is available for large-scale studies of

- Gd Water Filtering UCI built and maintains this water system
- Gd Light Attenuation using real 20" PMTs
- Gd Materials Effects many similar detector elements as in SK

Courtesy of M. Vagins, UCI

Correlated (Background-) Events in SK-I

Michael Smy, UC Irvine

Conclusion

- Hope to see distortion of solar v recoil e⁻ spectrum in SK-III
- Gain more statistics for atmospheric L/E analysis
- Search for v_e appearance with intense beam
- Plan to add neutron detection to SK-III for reactor \bar{v} 's, SN relic \bar{v} 's