Sep 19,2005@US-Japan Seminar, Hawaii

Challenge on ⁴⁸Ca enrichment

Separation of Calcium Isotopes with a Crown Ether

Pedersen@1962 Cram&Lehn@1987

18-crown-6-ether

Ryuta Hazama for the CANDLES Collaboration Dept. Phys., Osaka Univ.

⁴⁸Ca enrichment

- Natural abundance 0.187%
 - Enriched isotope expensive (elemag. separator; calutrons) ~200K\$/g ~10g \times 2 (in the world) no gaseous compounds
 - at room temp.
 - Gas centrifuge

1				T	-			T		VIIIo		V	III	
н	1	п	ш	I	v	v	VI	V	ш	He ²				
Li		4 30	B	c	6	7 N	0	F	9	10 Ne				•
) Na	1	12 4g	13 A1	Si	14	15 P	16 S	a	17	18 Ar				
K	9	20 a	21 Sc		22 Ti	23 V	24 Cr		25 da	,	2	5	27 Co	28 Ni
2	9	30 Zn	31 Ga	G	32	33 As	34 Se	Br	35	36 Kr				
3 RI	5	38 ir	39 Y	Z	40	41 Nb	42 Mo	T	0		4 Ru	4 8	45 b	46 Pd
4	7	48 Cd	49 In	Su	50	51 Sb	52 Te	1	53	54 Xo		T		
S Cs	5	56 3a	57 •La		72 H	73 Ta	74 W		75 . Re		2	6	77 Ir	78 Pt
7 A	9 u	80 Hg	81 .TL	Pb	12	83 Bi	84 Pe	A	85	86 Rn	1			
8 Fr	7	88 la	89	K	04	105 Na		Γ			T	T		
•	58 Cc	59 Pr	60 Nd	61 Pms	62 Sm	63 Eu	64 Gd	65 Td	66 Dy	67 Ho	68 Er	69 Tu	70 Yb	71 Lu
	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Bk	100 Fm	101 Md	102 No	103 Lr

Elements separated into isotopes with gas centrifuges -

A.I.Karchevski

 $\beta\beta$ isotopes; ⁴⁸Ca, ⁹⁶Zr, ¹⁵⁰Nd etc.

Technologies for isotope production for Ca

Separation technology	Field of use	Production per year	Cost
Electromagnetic (mass-spectroscopy effect)	universal	tens of grams	high
Chemical & phys. processes (rectification, chem. exchange etc)	light elements	tons	low
Gas diffusion	elements forming gas compounds	thousands of tons	middle
Gas centrifuge	elements forming gas compounds	thousands of tons	low
Laser (optical) separation	elements having isotope shift of spectrum lines	kilograms	middle
Plasma ion-cyclotron effect (under developing – the USA, Russia)	universal	hundreds of kilograms	middle

Liquid centrifuge? (mobility/viscosity with CaCl₂ solution & almina)

Find a cost-effective & efficient way of enrichment!!!

Unique Property of Crown Ether Complexing of cations(anions) by neutral molecules is an uncommon phenomenon. Stability is $\sim 10^4 \times \text{no-ring(crown)}$

•Held by electrostatic attraction between negatively charged O⁻ of the C-O dipoles & cation (Ca²⁺)

•How well the cation fits into the crown ring

•Liquid(aq-salt)-liquid(org-crown)

extraction in isotopic equilibrium

Total # of atoms in the ring # of oxygen atoms in the ring The mean square Nuclear charge radius of Ca

Two doubly magic isotopes; A parabolic behavior L.Vermeeren et al., -01 J.Phys.G,22(1996)1517

Ca	⁴⁰ Ca	⁴² Ca	⁴³ Ca	⁴⁴ Ca	⁴⁶ Ca	⁴⁸ Ca
isotope						
abundan ce(%)	96.9	0.65	0.135	2.09	0.004	0.187

Ca Isotope effects ~ Separation Principle

 $^{40}Ca^{2+}(aq) + ^{48}CaL^{2+}(org)$ $^{48}Ca^{2+}(aq) + ^{40}CaL^{2+}(org)$

DC18C6: Aldrich Chemical, 98.0% CHCl₃:Nakarai Tesque, 99.0% CaCl₂:Nakarai Tesque, 95.0%

Solvent Extraction process

- 1.vacant extraction to reduce impu.
- 2.mixed & stirred for 1 hour
- 3. standing for 1 hour @7°C
- 4. LLE iterated 6 times Magnetic Stirr B.E.Jepson&R.Dewitt, J. Inorg.nucl.Chem38(1976)1175

Isotopic Analysis by HR-ICP-MS@WERC $^{48}Ca/^{42}Ca = 0.289$ <u>Separation factor by HR-ICP-MS</u> **B** χ^2 /ndf 5.952/12 (0.290±0.006)(1.009±0.007)^X Black: A 0.40Red: B $\lambda \chi^2 / \text{ndf} 20.33 / 13$ (0.290±0.006)(1.014±0.006)^X 0.35 ⁴⁸Ca/⁴²Ca 0.30 0.25 $R(X) = R_0 \cdot \alpha^X$ $R = {}^{48} Ca / {}^{43}Ca$ 0.20 0 6 LLE iteration

Comparison

Summary of previously achieved(measured:known) calcium Table 1: enrichment. LLC(liquid-liquid chromatography), DC18C6((polyether) dicvclohexvl 18-crown-6), HDEHP(di(2-ethylhexyl) orthophosphoric acid). SLC(solid-liquid-chromatography), LIS(laser isotope separation), MCIRI(Magnetic Cyclotron Ion Resonance of Isotopes)

1 0000	separation factor	process	ref.(manufacturer)
1.0020	$1.012\pm0.005~(\alpha_{**}^{48})$	LLC(DC18C6)	Osaka RI-center and WERC
1.0028	$1.014 \pm 0.006 \ (\alpha_{43}^{48})$	LLC(DC18C6)	Osaka RI-center and WERC
1.0010	$1.0080 \pm 0.0016^{\dagger} (\alpha_{40}^{48})$	LLC(DC18C6)	
1.0007	$1.0029 \pm 0.0006 (\alpha_{44}^{48})$	LLC(HDEHP)	
	1.0013 ± 0.0003	LLC(amalgam(Hg))	
	$1.000043 \sim 1.000034$	SLC(ion-exchange)	Nuevir Dortes
	$1.00026 (\alpha_{40}^{47})$	SLC(ion-exchange)	orsin Dowex)
	$1.00021 (\alpha_{40}^{44})$	SLC(ion-exchange)	[6]resin(Dowex)
	$1.00087 \pm 0.00008 (\alpha_{40}^{48})$	SLC(ion-exchange)	[7]NH₄α-hydroxyisobutyrate&(Dowex)
1.0010	$1.0041 \pm 0.0004 (\alpha_{40}^{44})$	SLC(ion-exchange)	[8] iminodiacetate&resin(ANKB-50)
	$1.00013 \sim 1.00087^{\ddagger}$	SLC(ion-exchange)	[9](TIT)resin(PK-1), Counter-Current
	$1.00016 \sim 1.00037 (\alpha_{40}^{48})$	SLC(ion-exchange)	[10](Sophia) resin(Asahi LS-6)
	$1.00018 (\alpha_{40}^{48})$	SLC(ion-exchange)	[11]resin(AG50WX4)
	$1.00049 \sim 1.00013 (\alpha_{40}^{44})$	SLC(ion-exchange)18C6	[12]resin(AG50WX4)
1.0010	$1.0039 \pm 0.0002 (\alpha_{40}^{44})$	$SLC(cyptand_{2B}.2.2)$	[13] Need to verify by
1 0006	$1.0025 \pm 0.0003 (\alpha_{40}^{44})$	SLC(18C6)	[13]
1.0000	$1.00011 \pm 0.00003 (\alpha_{40}^{44})$	SLC(iminodiacetate)	^[13] precise TIMS &
1.0009	$1.0035 \pm 0.0003 (\alpha_{40}^{44})$	SLC(18C6+dimethylsulfoxide)	[14]
1 0006 1 0012	$1.0045 \sim 1.0104 (\alpha_{40}^{48})$ §	$SLC(cryptand2_B.2.2)$	^[15] More iterate LLE
1.0000~1.0013	-	LIS(LLNL)	a few \$/mg(\$1M/kg) for 4 Ca [16]
	20%	MCIRI	5kg/day→10g/day(0.7K\$/g)* [17]
	$65.3 \sim 95.7\%$	carbonate or oxide	TRACE Science Int. [18]
	$6\%\%$ (α_{40}^{44})	chemical diffusion [‡]	[19]

[†] 0.185% →10% for 1kg/yr by Counter current distribution method.

~800 iteration [#] 0.185% →0.226%[#] after 5 weeks, yielding 144mg of the enriched calcium(1.4g/yr).

§ In a preliminary experiment, they could isolate 30mg of calcium in which

⁴⁸Ca was enriched by 3.3 % at 0°C from 210mg of natural abundant calcium.

 $0.187 \rightarrow 2.0\%$ This corresponds to 3.7kg/yr(¥0.7M/kg). Current cost of product at "elec-

tromagnetic" (aka calutrons at ORNL) separation ~200K\$/g(¥200M/kg).

Major background molecular ions formed from the Ar Plasma, nebulized water and dissolved/contained air.

	Mass	Molecular ion	isotopic ratio(%)	required resolution
	40	^{40}Ca	99.941	-
X /III	= 40	$^{40}\mathrm{Ar}$	99.6	192498
	42	42 Ca	0.647	1 = 12000
	42	${ m H}_2^{40}{ m Ar}$	99.57	resolut 2162
ſ	43	$^{43}\mathrm{Ca}$	0.135	-
ļ	43	$^{86}\mathrm{Sr}^{2+}$	9.86	10392
	43	$^{42}\text{CaH}^+$	0.6469	5597
	43	$^{40}\mathrm{Ar3H}$	0.0298	1683
	44	$^{44}\mathrm{Ca}$	2.086	-
	44	$^{88}\mathrm{Sr}^{2+}$	82.58	16448 🗙
	44	CO_2	98.43	1280
١	44	${}^{14}\mathrm{N}_{2}^{16}\mathrm{O}$		
	48	$^{48}\mathrm{Ca}$	0.187	
ŀ	48	$^{48}\mathrm{Ti}$	73.8	10457 Enen
	48	$^{36}\mathrm{Ar^{12}C}$	0.333	2447

How to measure ⁴⁰Ca?

1. TIMS(TRITON Thermo Electron) Only four TRITONs in Japan No-Ar 2. Reaction(collision)-cell ICPMS Perkin Elmer ELAN-DRCII@Kochi Univ. Q inside reaction-cell allows use of ammonia \rightarrow can avoid interference of Ar by reaction-gas Simple collision-cell must use simple $gas(H_2, He)$ to limit adverse side reaction

This is crucial asset to realize ⁴⁸Ca enrichment (from ⁴⁰Ca)

cf. Chromium-crown(DC18C6)

Nuclear mass effect < Nuclear size&shape effect!!!

How small?

Evaluate each isotope effects by 3 measured $\varepsilon(=1-\alpha)$ $\varepsilon_{40-48}, \varepsilon_{43-48}, \varepsilon_{44-48}$ $\varepsilon_{43-48} = a(\Delta M/MM')_{43-48} + b\delta < r^2 >_{43-48} + (\ln K_{hf})_{43}$

Nuclear mass effect Nuclear size&shape effect Hyperfine splitting(spin)

	$CaLCI_2$ Si	$rLCl_2$ $CrLCl_3$
	$b\delta < r^2 > /[a(\triangle M/$	(MM')] $lnK_{hf}/[a(\Delta M/MM')]$
⁴⁰ Ca- ⁴⁸ Ca	0.02 ± 0.48	field shift effect is small!
$^{44}\mathrm{Ca}{-}^{48}\mathrm{Ca}$	0.62 ± 1.31	_
$^{43}\mathrm{Ca}{-}^{48}\mathrm{Ca}$	0.22 ± 0.88	$0.64{\pm}1.35$
$^{50}\mathrm{Cr}-^{52}\mathrm{Cr}$	1.12 ± 2.79	almost identical-effect
$^{54}\mathrm{Cr}-^{52}\mathrm{Cr}$	$-2.81{\pm}5.97$	_
$^{53}\mathrm{Cr}-^{52}\mathrm{Cr}$	-2.05 ± 8.94	$-0.83 {\pm} 6.17$
	• • • • • • • • • • • • • • • • • • • •	

If the field shift effect is dominat, this method is not effective for Ca.

Summary

- The **preliminary** <u>largest separation factor</u> of Ca by LLE using DC18C6 is suggested.
- We evaluated each contribution ratio of the field shift/hyperfine splitting shift effect to the mass effect of Ca for the 1st time.

The contributon of <u>the field shift effect is small</u>, <u>especially for ⁴⁰Ca-⁴⁸Ca</u>, compared with Cr.

• These indications are promissing towards the mass production of enriched ⁴⁸Ca by the chemical separation method with the help of the current evolving cutting-edge tech. of <u>microchannel chip</u>.

See the details on

R. Hazama et al., J. of Nucl. Sci.&Tech(2005)

http://wwwkm.phys.sci.osaka-u.ac.jp/~hazama/iso-wsp/workshop.html

Workshop on Double Beta Decay and Isotope Science/Engineering

\$→大阪大學

???-??? 2005 Osaka, Japan

Top Annoucement Program Workshop site Organizer Contact

August 8: <u>1st announcement</u>, update program pages

Motivation and scope

Neutrino mass is a key issue of current neutrino physics. Double beta decay may be the only probe presently able to access small neutrino masses with sensitivity down to ~0.03 eV, inferred from neutrino oscillation experiments. Actually, observation of neutrinoless double beta decay would identify a Majorana-type electron neutrino with a non-zero effective mass. Now the widest variety of stable isotopes are mainly produced at electromagnetic separators and gas centrifuges. Flexible highly efficient centrifugal technology is only possible for those elements (about 20) which have gaseous compounds at room temperature. Therefore, these methods cannot meet the production of some double beta decay isotopes such

as ⁴⁸Ca, ⁹⁶Zr and ¹⁵⁰Nd etc. The workshop will provide wide ranging opportunities for scientists and engineers in various fields working not only on isotope effects in physics, chemistry, and engineering but also applications of isotopes in various fields in order to exchange new ideas, share current knowledge and present new results.

Topics included are :

- o Double beta decays
- Isotope Science/Engineering
- Mass Spectroscopy, etc.

Please contact R. Hazama or Prof. T. Kishimoto

~ October(Nov.), 2005

Microchip Technology(synthetic chemistry) Microreactor

Fast and high conversion phase-transfer synthesis exploiting the liquid–liquid interface formed in a microchannel chip

Hideaki Hisamoto," Takumi Saito," Manabu Tokeshi, Akihide Hibara" and Takehiko Kitamoriab

^a Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. E-mail: hisamoto@appchem.t.u-tokyo.ac.jp; Fax: +81-3-5841-6039; Tel: +81-3-5841-7233

^b Integrated Chemistry Project, Kanagawa Academy of Science and Technology, Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan. E-mail: tokeshi@pop12.odn.ne.jp; Fax: +81-44-819-2092; Tel: +81-44-819-2037

Chem. Commun. 2001, 2662

The large specific interfacial areas and short molecular diffusion distances provided by glass microchips play important roles not only for effective phase-transfer synthetic reaction, but also for avoiding an undesirable side reaction. CHEMCOMN

ww.rsc.org/chemcomm

Fig. 1 Photographs showing glass microchip and liquid–liquid interface No-stirring, Fast!!

Fig. 3 Reaction conditions and results obtained with phase transfer diazocoupling reaction under microscale and macroscale conditions.