CANDLES for the study of ⁴⁸Ca double beta decay

T. Kishimoto Osaka Univ.

Contents

- Double beta decay and Majorana Mass
- Double beta decay of ⁴⁸Ca –ELEGANTS VI
- How to sense 1~10⁻² eV region
- CANDLES
 - -Concept
 - -CANDLES I, II, III, VI, V
- Prospect (Mile Stone)

Neutrino has to be Majorana particle

• Dirac mass term

$$\mathcal{L}_D = -m_D \overline{\nu_R^0} \nu_L^0 + \text{ h. c.}$$

- Majorana mass term
 - Left-handed and righthanded particle could have different mass
 - We have only left handed neutrino.
 - Heavy right-handed neutrino
 - Lepton number violation

Double beta decay has to be measured.

$$\mathcal{L}_{m_L} = -\frac{m_L}{2} \overline{(\nu_L^0)^c} \nu_L^0 + \text{ h. c.}$$

Relativity: Helicity flip mass

Current understanding

Double beta decay of ⁴⁸Ca

- Largest Q value (4.27 MeV)
 - next largest ¹⁵⁰Nd (3.3 MeV)
 - Large phase space factor
 - Least background (γ : 2.6 MeV, β : 3.3 MeV)
- Natural abundance 0.187%
 - Enrichment (no Gas); Hazama
 - Small amount ~10g
- Next generation

- $M_{_V} \propto 1/T^2 \propto M^2$ if background free

- $M_{_V} \propto 1/T^2 \propto M^4$ if background limited
- ⁷⁶Ge experiment (already seen backgrounds)
- ⁴⁸Ca (no backgrounds seen) large Q value

ELEGANT VI

ELEGANTS VI

- CaF₂(Eu)
 - Size 45x45x45 mm³ x 25(23)
 - ~6.42 g ⁴⁸Ca
- passive shield
 - OFHC Cu, Pb (γ)
 - air-tight box + N₂ gas purge (Rn)
 - -LiH + paraffin, Cd sheet, H₃BO₃+H₂O tank (n)
- 4π active shield
 - $-CaF_2(Eu)+CaF_2(pure)$
 - roll-off ratio (PMT side shield)
 - Segmentation (single hit)
 - CsI(TI) veto detector

Roll-off ratio (4π active shield)

CaF₂(pure) as { light guide active shield against PMT

 $CaF_{2}(Eu)$ is not transparent for U.V. light

Roll-off ratio

Oto Cosmo Observatory

Under ground laboratory

Radioactive Backgrounds

(B)

80 H**g**

92 U

Radioactive Contamination

- U-series
 - hardware (second) trigger
 - time window : 9 499 μ sec.

²¹⁴Bi
$$\xrightarrow{E_{\beta}=3270}$$
 $\xrightarrow{214}$ Po $\xrightarrow{E_{\alpha}=7687}$ $\xrightarrow{210}$ Pb (164.3 μ sec)

• Ac-series

$${}^{219}\text{Rn} \xrightarrow{E_{\alpha} = 6819} {}^{215}\text{Po} \xrightarrow{E_{\alpha} = 7386} {}^{211}\text{Pb}$$
(1.781 msec)

- Th-series
 - time window : 0.05 1.0 (0.5) sec.

$$^{220} \operatorname{Rn} \xrightarrow{E_{\alpha} = 6288} \, {}^{216} \operatorname{Po} \xrightarrow{E_{\alpha} = 6779} \, {}^{212} \operatorname{Pb}$$

$$(0.145 \operatorname{sec})$$

(0.145 sec) time window : 0.05-1.0 sec

Average contamination (#2 - #24)U - series 1.11×10^{-3} Bq/kg Ac - series 3.84×10^{-4} Bq/kg Th - series 1.09×10^{-4} Bq/kg

> U: 1.25x10⁻⁵ Bq= 1 ppt Th: 0.1 mBq=24.6 ppt

Double Beta Decay of ⁴⁸Ca Studied by ELEGANT VI

How to sense $m_v = 1 \sim 10^{-2} eV$

- Big detector
 - Huge amount of materials
- Low radioactive background
 - Active shield
 - Passive shield
 - Low background material
 - BG rejection by signal processing
- High resolution
 - Backgrounds from $2\nu\beta\beta$ decay

• **CANDLES** is our solution

CANDLES

<u>CA</u>lcium fluoride for studies of <u>N</u>eutrino and <u>D</u>ark matrters by <u>Low Energy Spectrometer</u>

Big detector

- CaF₂ crystal
 - Best optical lens
 - Long attenuation length
 - 10m (catalog value for visible light)
 - >1m (our measurement for scintillation light)
- Large volume detector
 - 10x10x10 cm³ x 600 (6t) (CANDLES IV)
 - Increase the number of nuclei (⁴⁸Ca)

6.4 g (ELE VI) ~6(kg)

 8.1×10^{22} atoms $\sim 10^{26}$ atoms

Low Radioactive Background Active shield (Liquid Scintillator)

• 4π active shield

decay time of the signal

- ~1 μ sec CaF₂
- ~ 10 nsec liquid scintillator
- passive shield
 - Large volume with Low radio activity
 - U/Th ~0.1ppt, K ~1ppt
 - purification system (U,Th,K,Rn,...) KamLAND, BOREXINO

CANDLES I

Signal discrimination

Signal discrimination

ADC(total)

Low background material

- Backgrounds @ ~4 MeV
 - Maximum energy
 - $\gamma \sim 2.6$ MeV, $\beta \sim 3.3$ MeV, α (max) ~ 2.5 MeV(quench)
 - Successive decay of $\alpha \beta \gamma$
 - ~1µsec decay time

 $2\nu\beta\beta$

 $0\nu\beta\beta$ Window

Backgrounds

Rejection . . . High Purity $CaF_2(pure)$ Crystal Rejection of double pulse Pulse Shape Discrimination between α and γ rays Space-Time Correlation Cut . . . For ²⁰⁸Tl Rejection

Rejection of Double Pulse

Reduction100MHz FADC $\Delta T > 30ns(3ch)$; ~3%500MHz FADC (under preparation) $\ldots \Delta T > 5ns$; ~1%

Pulse Shape Discrimination

Difference in decay time between α and γ rays

- PSD (Event by Event)
 - FADC (100MHz)

A_{fast}/A_{slow} (Fast and slow component)

Development of Low Background CaF₂ Crystals

CaF2(Eu) in ELEGANT VI U-chain(214Bi) :1100mBq/kg Th-chain(220Rn) :98mBq/kg

Where do is the crystals contaminated?

High resolution CaF₂ crystal

- **Resolution** $\Delta E \sim \frac{1}{\sqrt{N_p}}$
- Scintillation light
 - -~1/2 of CaF₂(Eu) (quart window PMT)

- peak emission U.V. (285 nm)

- Increase # of photons
 - Wavelength shifter
 - UV sisible light

Wavelength shifter

CaF₂ UV light Maximum light output @ 0.3g/I PPO Pseudocumene reduces it. Two phase

CANDLES III

- Construction almost completed @ Osaka Univ.
- CaF₂(pure)
 - 10³ cm³ × 60 crystal; 191 kg
 - ~400 kg @ underground lab.
- Liquid scintillator
 - $^{\phi}1000 \times ^{h}1000$ acrylic container
- Purification system (Ogawa)
- H₂O Buffer passive shield
 - $^{\phi}2800 \times {}^{h}2600$
 - safety regulation
- PMTs
 - 15" PMT (×8) : R2018
 - 13" PMT (×32) : R8055

CANDLES III

CANDLES III

Photomultiplier Tube(13inch)

🎯 Inside View

40 PMTs Version And 60 PMTs Version . . . Funded

Tank for Liquid Scintillator (Acrylic Case)

CANDLES IV

 $15 \times 15 \times 15 \text{ cm}^3 \text{ CaF}_2$ (600 cubes) 6.4 t liquid scintillator Vessel (⁴⁸Ca) 6.4 kg

1.BG 1.Needs R&D 2.Energy resolution 1.Buy PMT & gain adjust

CANDLES and world projects

Mile stone

- ELEGANTS VI
 - running with new BG rejection (2v)
- CANDLES I, II, POP
- CANDLES III (under construction @ our lab.)
 - CaF2(10cm³) 200kg:sea level, 400 kg; UG lab.

— achieved

- ~30 μ Bq/kg for ~0.5 eV
- CANDLES IV
 - 15cm³ cube (600 crystals) 6.4t; Kamioka
 - ~3 $\mu Bq/kg$ for ~0.1 eV in 6 years
- CANDLES V

- 100t; SNO or Kamland or ... for ~30meV in 7years

Sensitivity of CANDLES Series

	CANDLES III	CANDLES IV	CANDLES V
Crystal	3.2kg × 60 crystals		
Total Mass	191kg	6.4 ton	100 ton
Energy Resolution	4.0%(Req.)	3.5%(Req.)	3.2%(Req.)
214 Bi(µBq/kg)	50	10	1
$^{212}\text{Bi}(\mu\text{Bq/kg})$	20	1	0.1
2νββ	0.01	0.10	1.33
214 Bi	0.01	0.03	0.05
²¹² Bi	0.07	0.10	0.15
²⁰⁸ Tl	0.04	0.06	0.10
Expected BG	0.14/year	0.29/year	1.63/year
Measuring Time	5 years	6	7
<mv></mv>	0.56 eV	0.10	0.03
	2006	2007 2008	Performance @ sea Level Lab.
			Measurement @ Underground Lab.
CANDLES IV			Construction start

Prospects

- If the detector to sense 0.03 eV is ever built,
 - Majorana neutrino
 - Neutrino mass
- Next generation detector
 - Much bigger
 - CANDLEC IV (6.4t)
 - Further bigger
 - CANDLES V (100t)
 - SNO, Kamland
- Further option: Enrichment

