Double Beta Decay of ⁴⁸Ca in CANDLES III -<u>Development of the calibration system</u>-

Graduate School of Science, Osaka University

Y.Hirano, T.Kishimoto, I.Ogawa, R.Hazama, S.Yoshida, S.Umehara, K.Matuoka, K.Ichihara, and for the CANDLES Collaboration

Double Beta Decay

Neutrino-less Double Beta Decay (0

- **0** rate ··· gives the absolute mass scale
- **o** event · · · evidence for the Majorana nature

Beyond the Standard Model

0 : Neutrino-less Double Beta decay

We are aiming for detection of **0**

with **CANDLES**

CANDLES System

CAlcium fluoride for studies of Neutrino and Dark matters by Low Energy Spectrometer

Double beta decay nucleus : ⁴⁸Ca

CaF₂(pure) scintillator source = detector High Q-value (4.27MeV) Low background CaF₂(pure) immersed in Liquid Scintillator Liq. Scinti. act as 4 pi active veto

Energy Calibration in CANDLES

Calibration is important task to identify 0 event

Preferable to calibrate around Q-value (4.27MeV) region

- Identify Q-value region with precision

(CaF₂(pure) Linearity has confirmed ever with accelerator and LED)

Stable measurement in long period due to the rare event

- Regular energy calibration
- Fluctuation PMTs gain and electronics · · ·

Realization of Low background environment

(Not install apparatus for calibration as much as possible)

Calibration system in CANDLES III (1)

No standard ray sources with energy around Q-value region Sum energy of ²⁴Na

1.36MeV + 2.75MeV = 4.11MeV, close to the Q-value (4.27MeV)

Difficult to obtain photo-peak due to the low efficiency

Cut by liquid scintillator act as active veto

Calibration system in CANDLES III (2)

Enhance detection efficiency of sum energy peak

Underwater robot conveys the source close to CaF_2s (Possible to take it out of the Tank)

Conceptual diagram of Calibration system

Pulse Shape Discrimination in CANDLES

Liq. Scinti. > Liq. Scinti.+CaF₂(pure) > CaF₂(pure)

To Obtain CaF₂(pure) spectrum cutting by Liquid Scintillator (active veto)

Simulation of Pulse Shape (FADC output)

PSD Simulation in CANDLES III

CANDLES III · Resolution : 4% @4.27MeV · Liq. Scinti. Veto Phase (~50cm)

2 Cut (Liq.Scinti. Th. = 25keV) Chi square · · · 1.65 Mean · · · 4.09MeV FWHM · · · 4.3%

1 Cut (Liq.Scinti. Th. = 50keV) Chi square · · · 1.83 Mean · · · 4.11MeV FWHM · · · 4.1% Correspond to Sum energy

Possible to calibrate around Q-Value with ²⁴Na !

Experiment : Prototype CANDLES

To confirm the simulation reproduce experiment

CANDLES - I

- 10 cm Cube : CaF₂(pure)
- Liq. Scinti. Veto Phase ~4 cm
- 5 inch PMT \times 4

Activate NaCl

Result of Experiment

Sum peak has not seen, because · · ·

- -Thin of Liq. Scinti. Veto phase
- -Resolution was not so good 12%@662keV
- -Insufficient statistics

The Simulation reproduce the Experiment

- We are looking for Neutrino-less double beta decay The detection system is CANDLES To calibrate around Q-value, we use sum energy of ²⁴Na
- Possible to calibrate around Q-value in CANDLES III
- Sum peak has not seen with prototype CANDLES
- The Simulation reproduce the experiment