Cyclotoron Facility > About Cyclotron Facility > Beamlines and experimental devices > Grand Raiden

 

Grand Raiden /Large Acceptance Spectrograph

 

  • Introduction
  • Specification
  • Layout
  • Recent Results
  • Publication List
  • PhD Receipients
 

The two-arm spectrometer, Grand Raiden and Large Acceptance Spectrometer (LAS) equipped with a high resolution beam line is a powerful tool of nuclear physics studies. Grand Raiden spectrometer has high resolution (D/M=37,000) by applying complete dispersion matching including both lateral and angular dispersion and focus matching, while LAS has large acceptance (20 msr). The Focal Plane Polarimeter (FPP) for Grand Raiden can analyze the polarization of protons with an efficiency of about 3% and an effective analyzing power of about 40%. It can measure the longitudinal component of the polarization vector with DSR magnet.

For more technial information, please refere to the following web page and publication.

* WS beam line web page.
* M. Fujiwara et al., Nucl. Instrum. Methods Phys. Res. A 422, 484 (1999).
Grand Raiden

The basic specification of the Grand Raiden Spectrograph is listed in the table.

There are two vertical drift chambers (effective length 1.2 m ) for general use as the focal plane position counters of the spectrometer. The position and angular resolution obtained from ray-tracing are 0.2 mm and 2.0 mr, respectively. The Focal Plane Polarimeter (FPP) can analyze the polarization of protons with an efficiency of about 3% and an effective analyzing power of about 40%.

The whole system is mounted on a rotatable table and angular distributions of scattered particles from -5 deg to 90 deg can be measured.

In the scattering chamber there are three remote driving systems, target (up and down), a turntable with Faraday cup, and one general purpose turntable. F

Grand Raiden
Resolving Power

37,000

Bending Radius 3 m
Bending Angle 162 deg
Bending Power

5.4 Tm

Dispersion 15.4 m
Solid Angle

~4 msr

  Horizontal ±20mr
  Vertical ±70mr
Momentum Acceptance 5 %
Angle 0-70 deg
LAS

The basic specification of the Grand Raiden Spectrograph is listed in the table.

The focal plane counter system consists of two vertical drift chambers (effective length: 1.7 m, effective height: 35 cm ) for ray-tracing and two planes of plastic scintillators for the trigger (200cm x 45cm, 6 mm thickness). In addition, twelve segmented scintillators (hodoscope) are available for the measurement of 2He or other two particles in coincidence. It is possible to measure and analyze with a momentum resolution of 5x10-4 (including momentum width of beam), and angular resolution (FWHM) of 2 mr horizontally and 30 mr vertically.

In the zero-degree measurements,if the momentum of the measured particle is about half of the incident beam momentum, we can transport the incident beam through the spectrograph and stop in an external beam dump.

LAS
Resolving Power

5,000

Bending Radius 1.75m
Bending Angle 70 deg
Bending Power

3.22 Tm

Dispersion 2 m
Solid Angle

~20 msr

  Horizontal ±60mr
  Vertical ±100mr
Momentum Acceptance 30 %
Angle 0-130 deg

For more technial information, please refere to the following web page and publication.

* WS beam line web page.
* M. Fujiwara et al., Nucl. Instrum. Methods Phys. Res. A 422, 484 (1999).

 

Evidence of Tensor Interactions in 16O

The tensor interactions are some of the most important nuclear interactions acting between a neutron and a proton in an atomic nucleus. Despite the importance, experiment evidences are scarce and limited to nuclei with masses equal to or lighter than the alpha particle. In a recent experiment measuring the one-neutron transfer (p,d) reaction at large momentum transfer on an 16O target using the RCNP Grand Raiden spectrometer, we observed a possible evidence on the effect of the tensor interactions in the 16O nucleus [1]. The (p,d) cross sections populating the 5/2+ and/or 1/2+ excited state in 15O were found to be increased compared to the cross sections populating the ground 1/2- state with increased momentum transfer. Because (i) the tensor interactions can generate proton-neutron pairs with large relative momentum, and (ii) the population of the 5/2+ and/or 1/2+ excited state via the direct (p,d) reaction is only possible if the ground-state of 16O has mixed configurations which may be attributed to the tensor interactions (see Fig.), the observation of large components of high-momentum neutrons in the ground-state of 16O indicates possible evidence on the tensor interactions.

Referrence

[1] H. J. Ong, I. Tanihata, A. Tamii et al., Phys. Lett. B725, 277 (2013).

Fig.: Possible two-particle two-hole configuration in the ground state of 16O due to the tensor interactions.

 

Pygmy Dipole Resonance:

Concentration of electric dipole (E1) strength in the vicinity of the neutron threshold has recently been found in several stable and unstable heavy nuclei. The strength is called the low-energy dipole strength or the Pygmy Dipole Resonance (PDR) in relation to the theoretical predictions of the dipole oscillation of the neutron skin against the isospin-saturated core. The PDR strength has been studied by applying the proton inelastic scattering at forward angles employing the high-resolution spectrometer Grand Raiden. The PDR strength in 90Zr has been clearly separated from the spin-M1 contribution (Fig. ) [1]. Concentration of the skin-oscillation type transition density is also found in 208Pb [2].

Referrence

[1] C. Iwamoto et al., PRL 108, 262501 (2012).

[2] I. Poltoratska et al., PRC 85, 41304(R) (2012).

Fig.:Observation and separation of PDR and spin-M1 contributions in the lower excitation energy bump in 90Zr [1].

 

Gamow-Teller Strength and the double-beta decay matrix element

The Gamow-Teller strength distribution has been determined by (3He,t) charge-exchange rations on 136Xe [1], 71Ge [2], 76Ge [3], 128,130Te [4], 100Mo [5] and 96Zr.  The data are important to study the double-beta decay nuclear matrix-elements as well as the charged-current reaction cross sections of neutrino detectors.

Referrence

[1] P. Puppe et al., PRC 84, 051305(R) (2011).

[2] D. Frekers et al., PLB 706, 134 (2011).

[3] J.H. Thies et al., PRC 86, 014304 (2012).

[4] P. Puppe et al., PRC 86, 044603 (2012).

[5] J.H. Thies et al., PRC 86, 044603 (2012).

[6] J.H. Thies et al., PRC 86, 054323 (2012).


2023
1 Tetsuo Noro, et al.,
Experimental study of (p, 2p) reactions at 197 MeV on 12C, 16O, 40,48Ca, and 90Zr nuclei leading to low-lying states of residual nuclei
Progress of Theoretical and Experimental Physics, 093D01 (2023)
https://doi.org/10.1093/ptep/ptad116
2 A. Tamii, L. Pellegri, P.-A. Söderström et al. (PANDORA Collaboration)
PANDORA Project for the study of photonuclear reactions below A=60 (PANDORA Project White Paper)
Accepted for publication in Euro. Phys. J. A (2023)
https://doi.org/10.48550/arXiv.2211.03986
3 R. W. Fearick, P. von Neumann-Cosel, ...H. Matsubara, ... and A. Tamii
Electric dipole polarizability of 40Ca
Phys. Rev. Res. 5, L022044 (2023)
https://doi.org/10.1103/PhysRevResearch.5.L022044
4 E. Kido, T. Inakura, M. Kimura, N. Kobayashi, S. Nagataki, N. Shimizu, A. Tamii, Y. Utsuno,
Evaluations of uncertainties in simulations of propagation of ultrahigh-energy cosmic-ray nuclei derived from microscopic nuclear models,
Astroparticle Physics 102866 (2023)
https://doi.org/10.1016/j.astropartphys.2023.102866
2021
1 K. Inaba, Y. Sasamoto, T. Kawabata et al.,
Search for α condensed states in 13C using α inelastic scattering
Prog. Theo. Exp. Phys. 9, 093D01 (2021).
https://doi.org/10.1093/ptep/ptab102
2 H. Matsubara and A. Tamii
Quenching of isovector and isoscalar spin-M1 excitation strengths in N=Z nuclei
Frontiers in Astronomy and Space Sciences 8, 667058(2021)
https://doi.org/10.3389/fspas.2021.667058
3 J. C. Zamora, C. Sullivan, R. G. T. Zegers, et al.
Investigation of the isoscalar response of 24Mg to 6Li scattering
Phys. Rev. C 104, 014607 (2021).br> https://doi.org/10.1103/PhysRevC.104.014607
4 S. Adachi, Y. Fujikawa, T. Kawabata et al.,
Candidates for the 5alpha condensed state in 20Ne
Phys. Lett. B 819, 136411 (2021).
https://doi.org/10.1016/j.physletb.2021.136411
5 M. Tsumura, T. Kawabata et al.,
First experimental determination of the radiative-decay probability of the 3−1 state in 12C for estimating the triple alpha reaction rate in high temperature environments
Phys. Lett. B. 817, 136283 (2021).
https://doi.org/10.1016/j.physletb.2021.136283
6 F.C.L. Crespi, A. Bracco, E.G. Lanza, A. Tamii et al.,
The structure of low-lying 1- states in 90,94Zr from (alpha, alpha'gamma) and (p,p'gamma) reactions
Phys. Lett. B 816, 136210 (2021).
https://doi.org/10.1016/j.physletb.2021.136210
7 Y. Chen, S. Adachi, H. Fujita, Y. Fujita, K. Hatanaka, C. Iwamoto, B. Liu, S. Noji, H. J. Ong, and A. Tamii et al.,
Neutron transfer studies on 25Mg and its correlation to neutron radiative capture processes
Phys. Rev. C 103, 035809 (2021).
https://doi.org/10.1103/PhysRevC.103.035809
8 J. Tanaka, Z. Yang, S. Typel, N. Kobayashi, S. Nakamura, A. Tamii, et al.,
Formation of α clusters in dilute neutron-rich matter
Science 371, 260 (2021).
https://doi.org/10.1126/science.abe4688
2020
1 S. Bassauer, P. von Neumann-Cosel, P.-G. Reinhard, A. Tamii et al.,
Evolution of the dipole polarizability in the stable tin isotope chain
Phys. Lett. B 810, 135804 (2020).
https://doi.org/10.1016/j.physletb.2020.135804
2 S. Bassauer, P. von Neumann-Cosel, P.-G. Reinhard, A. Tamii et al.,
Electric and magnetic dipole strength in 112,114,116,118,120,124Sn
Phys. Rev. C 102, 034327 (2020).
https://doi.org/10.1103/PhysRevC.102.034327
3 T. Noro, T. Wakasa, T. Ishida, H. P. Yoshida et al.,
Experimental study of (p, 2p) reactions at 392 MeV on 12C, 16O, 40Ca and 208Pb nuclei leading to low-lying states of residual nuclei
Progress of Theoretical and Experimental Physics, ptaa109 (2020)
https://doi.org/10.1093/ptep/ptaa109
4 K. B. Howard, U. Garg et al.,
Compressional-mode resonances in the molybdenum isotopes: Emergence of softness in open-shell nuclei near A=90
Phys. Lett. B 807, 135608 (2020).
https://doi.org/10.1016/j.physletb.2020.135608
5 J.C. Zamora, C. Sullivan, R.G.T. Zegers et al.,
Reexamination of Isoscalar Giant Resonances in 12C and 93Nb through 6Li Scattering
Phys. Rev. C 101, 064609 (2020).
https://doi.org/10.1103/PhysRevC.101.064609
6 H. Akimune, H. Ejiri, F. Hattori, et al.,
Spin-dipole nuclear matrix element for the double beta decay of 76Ge by the (3He, t) charge-exchange reaction
J. Phys. G: Nucl. Part. Phys. 47, 05LT01 (2020).
https://doi.org/10.1088/1361-6471/ab7a87
7 C. Douma, H. Akimune, H. Ejiri, H. Fujiwara, M.N. Harakeh et al.,
Gamow-Teller strength distributions of 116Sb and 122Sb using the (3He,t) charge-exchange reaction
Euro. Phys. J. A 56, 51 (2020).
https://doi.org/10.1140/epja/s10050-020-00044-9
8 K. B. Howard, U. Garg, M. Fujiwara, T. Furuno, N. Kobayashi, S. Nakamura, Z. Yang et al.,
Compression-mode resonances in the calcium isotopes and implications for the asymmetry term in nuclear incompressibility
Phys. Lett. B. 801, 135185 (2020).
https://doi.org/10.1016/j.physletb.2019.135185
2019
1 H. Fujita, Y. Fujita, et al.,
Experimental study of Gamow-Teller transitions via high energy resolution 18O(3He,t)18F reaction: Identification of the low-energy "super''-Gamow-Teller state
Phys. Rev. C 100, 034618 (2019).
https://doi.org/10.1103/PhysRevC.100.034618
2 N. Kobayashi, K. Miki, T. Hashimoto, C. Iwamoto, A. Tamii, et al.,
Excitation and decay coincidence measurements at the GRAF beamline for studies of pygmy and giant dipole resonances
Euro. Phys. J. A 55, 231 (2019).
https://doi.org/10.1140/epja/i2019-12854-7
3 M.S. Reen, I. Ou, T. Sudo, M. Sakuda, A. Tamii, et al.,
Measurement of γ rays from the giant resonances excited by 12C(p,p') reaction at 392 MeV and 0°
Phys. Rev. C. 100, 024615 (2019).
https://doi.org/10.1103/PhysRevC.100.024615
4 P. von Neumann-Cosel and A. Tamii
(a review paper) E1 and M1 modes in high-resolution inelastic proton scattering at 0°
Euro. Phys. J. A 55, 110 (2019).
https://doi.org/10.1140/epja/i2019-12781-7
5 F. Diel, Y. Fujita, H. Fujita, et al.,
High-resolution study of the Gamow-Teller (GT−) strength in the 64Zn(3He,t)64Ga reaction
Phys. Rev. C. 99, 054322(2019)
https://doi.org/10.1103/PhysRevC.99.054322
6 A. Bracco, E. Lanza, and A. Tamii
(a review paper) Isoscalar and isovector dipole excitations: nuclear properties from low-lying states and from the isovector giant dipole resonance
Prog. Part. Nucl. Phys. 106, 360 (2019).
https://doi.org/10.1016/j.ppnp.2019.02.001
7 D. Kahl, Y. Fujita, H. Fujita, et al.,
s-wave resonances for the 18F(p,α )15O reaction in novae
Euro. Phys. J. A, 4 (2019).
https://doi.org/10.1140/epja/i2019-12682-9
2018
1 S. Terashima, L. Yu, H.J. Ong, I. Tanihata, N.Aoi, P.Y.Chan, H. Sakaguchi, A. Tamii, D.T. Tran et al.,
Dominance of tensor correlations in high-momentum nucleon pairs studied by (p,pd) reaction
Phys. Rev. Lett. 121, 242501 (2018)
https://doi.org/10.1103/PhysRevLett.121.242501
2 C. Sullivan, R. G. T. Zegers et al. (CAGRA-GR collaboration)
The (6Li,6Li [3.56] MeV) reaction at 100 MeV/u as a probe of Gamow-Teller transition strengths in the inelastic scattering channel
Phys. Rev. C 98, 015804 (2018).
https://doi.org/10.1103/PhysRevC.98.015804
3 Y. K. Gupta, S. Adachi, M. Fujiwara, C. Iwamoto, A. Tamii, T. Furuno et al.
Isoscalar giant monopole, dipole, and quadrupole resonances in 90,92Zr and 92Mo
Phys. Rev. C 97, 064323 (2018).
https://doi.org/10.1103/PhysRevC.97.064323
4 A.M. Long, et al.
α-unbound levels in 34Ar from 36Ar( p,t)34Ar reaction measurements and implications for the astrophysical 30S(α, p)33Cl reaction rate
Phys. Rev. C 97, 054613(2018)
http://doi.org/10.1103/PhysRevC.97.054613
5 R. W. Fearick, B. Erler, H. Matsubara, P. von Neumann-Cosel, A. Richter, R. Roth, and A. Tamii
Origin of the structure of the giant dipole resonance in sd-shell nuclei
Phys. Rev. C 97, 044325(2018)
https://doi.org/10.1103/PhysRevC.97.044325
6 S. Adachi, T. Kawabata, K. Minomo et al.
Systematic analysis of inelastic \( \alpha \) scattering off self-conjugate \( A = 4n \) nuclei
Phys. Rev. C 97, 014601 (2018).
https://doi.org/10.1103/PhysRevC.97.014601
7 L.M.Donaldson, P. von Neumann-Cosel, A. Tamii, et al.,
Deformation dependence of the isovector giant dipole resonance: Theneodymium isotopic chain revisited,
Phys. Lett. B 776, 133 (2018).
https://doi.org/10.1016/j.physletb.2017.11.025
2017
1 K. Win, Y. Fujita, Y.Y. Oo, et al.,
High-resolution study of T_z = +1 → 0 Gamow-Teller transitions in the 26Mg(3He,t)26Al reaction
Phys. Rev. C 96, 064309 (2017).
https://doi.org/10.1103/PhysRevC.96.064309
2 D. Martin, P. von Neumann-Cosel, A. Tamii, N. Aoi, S. Bassauer, C. A. Bertulani, J. Carter, L. Donaldson, H. Fujita, Y. Fujita, T. Hashimoto, K. Hatanaka, T. Ito, A. Krugmann, B. Liu, Y. Maeda, K. Miki, R. Neveling, N. Pietralla, I. Poltoratska, V. Y. Ponomarev, A. Richter, T. Shima, T. Yamamoto, M. Zweidinger, 
Test of the Brink-Axel Hypothesis for the Pygmy Dipole Resonance
Phys. Rev. Lett., vol. 119, no. 18, nov 2017, pp. 182503
https://doi.org/10.1103/PhysRevLett.119.182503
3 H. Sakaguchi, J. Zenihiro
Proton elastic scattering from stable and unstable nuclei - Extraction of nuclear densities
Progress in Particle and Nuclear Physics Volume 97, Pages 1—52, (November 2017)
4 Y. Ayyad, J. Lee, A. Tamii, J. A. Lay, A. O. Macchiavelli, N. Aoi, B. A. Brown, H. Fujita, Y. Fujita, E. Ganioglu, K. Hatanaka, T. Hashimoto, T. Ito, T. Kawabata, Z. Li, H. Liu, H. Matsubara, K. Miki, H. J. Ong, G. Potel, I. Sugai, G. Susoy, A. Vitturi, H. D. Watanabe, N. Yokota, J. Zenihiro,
Investigating neutron-proton pairing in sd -shell nuclei via (p,3He) and (3He,p) transfer reactions
Phys. Rev. C, vol. 96, no. 2, aug 2017, pp. 021303.
https://doi.org/10.1103/PhysRevC.96.021303
5 R. Talwar, B. P. Kay, A. J. Mitchell, S. Adachi, J. P. Entwisle, Y. Fujita, G. Gey, S. Noji, H. J. Ong, J. P. Schiffer, A. Tamii,
High-j neutron excitations outside 136Xe
Phys. Rev. C, vol. 96, no. 2, aug 2017, pp. 024310.
https://doi.org/10.1103/PhysRevC.96.024310
6 J. Birkhan, M. Miorelli, H. Matsubara, P. von Neumann-Cosel, A. Tamii et al.
Electric dipole polarizability of 48Ca and implications for the neutron skin
Phys. Rev. Lett. 118, 252501 (2017)
https://doi.org/10.1103/PhysRevLett.118.252501
7 M. Mathy, J. Birkhan, H. Matsubara, P. von Neumann-Cosel, N. Pietralla, V. Y. Ponomarev, A. Richter, A. Tamii,
"Search for weak M1 transitions in 48Ca with inelastic proton scattering
Phys. Rev. C, vol. 95, no. 5, may 2017, pp. 054316.
https://doi.org/10.1103/PhysRevC.95.054316
8 W. W. Qu, G. L. Zhang, S. Terashima, T. Furumoto, Y. Ayyad, Z. Q. Chen, C. L. Guo, A. Inoue, X. Y. Le, H. J. Ong, D. Y. Pang, H. Sakaguchi, Y. Sakuragi, B. H. Sun, A. Tamii, I. Tanihata, T. F. Wang, R. Wada, Y. Yamamoto,
Repulsive three-body force and channel-coupling effects via C12+C12 scattering at 100A MeV
Phys. Rev. C, vol. 95, no. 4, apr 2017, pp. 044616
https://doi.org/10.1103/PhysRevC.95.044616
9 D. Frekers, M. Alanssari, H. Ejiri, M. Holl, A. Poves, J. Suhonen
Charge-exchange reactions on double- β decaying nuclei populating Jπ=2− states
J. Phys. G Nucl. Part. Phys., vol. 43, no. 11, nov 2016, pp. 11LT01.
https://doi.org/10.1088/0954-3899/43/11/11LT01
10 T. Wakasa, K. Ogata and T. Noro,
"Proton-induced knockout reactions with polarized and unpolarized beams
Prog. Part. Nucl. Phys., jun 2017.
hhttps://doi.org/10.1016/j.ppnp.2017.06.002
2016
1 H. Ejiri, D. Frekers,
Spin dipole nuclear matrix elements for double beta decay nuclei by charge-exchange reactions,
J. Phys. G Nucl. Part. Phys., vol. 43, no. 11, nov 2016, pp. 11LT01.
https://doi.org/10.1088/0954-3899/43/11/11LT01
2 H. Ejiri, K. Zuber,
Solar neutrino interactions with liquid scintillators used for double beta-decay experiments,
J. Phys. G Nucl. Part. Phys., vol. 43, no. 4, aug 2016, pp. 045201.
https://doi.org/10.1088/0954-3899/43/4/045201
3 J. P. Entwisle, B. P. Kay, A. Tamii, S. Adachi, N. Aoi, J. A. Clark, S. J. Freeman, H. Fujita, Y. Fujita, T. Furuno, T. Hashimoto, C. R. Hoffman, E. Ideguchi, T. Ito, C. Iwamoto, T. Kawabata, B. Liu, M. Miura, H. J. Ong, J. P. Schiffer, D. K. Sharp, G. Süsoy, T. Suzuki, S. V. Szwec, M. Takaki, M. Tsumura, T. Yamamoto,
"Change of nuclear configurations in the neutrinoless double- βdecay of 130Te→130Xe and 136Xe→136Ba
Phys. Rev. C, vol. 93, no. 6, jun 2016, pp. 064312.
https://doi.org/10.1103/PhysRevC.93.064312
4 D. Frekers, M. Alanssari, T. Adachi, B. T. Cleveland, M. Dozono, H. Ejiri, S. R. Elliott, H. Fujita, Y. Fujita, M. Fujiwara, K. Hatanaka, M. Holl, D. Ishikawa, H. Matsubara, H. Okamura, P. Puppe, K. Suda, A. Tamii, J. Thies, H. P. Yoshida,
High energy-resolution measurement of the 82Se(3 He,t)82Br reaction for double-βdecay and for solar neutrinos
J. Radioanal. Nucl. Chem., vol. 305, no. 3, 2015, pp. 731–736.
https://doi.org/10.1103/PhysRevC.94.014614
5 Y. K. Gupta, U. Garg, J. Hoffman, J. Matta, P. V. M. Rao, D. Patel, T. Peach, K. Yoshida, M. Itoh, M. Fujiwara, K. Hara, H. Hashimoto, K. Nakanishi, M. Yosoi, H. Sakaguchi, S. Terashima, S. Kishi, T. Murakami, M. Uchida, Y. Yasuda, H. Akimune, T. Kawabata, M. N. Harakeh,
Deformation effects on isoscalar giant resonances in 24Mg
J. Radioanal. Nucl. Chem., vol. 305, no. 3, 2015, pp. 731–736.
https://doi.org/10.1103/PhysRevC.93.044324
6 Y. Gupta, U. Garg, K. Howard, J. Matta, M. Şenyiğit, M. Itoh, S. Ando, T. Aoki, A. Uchiyama, S. Adachi, M. Fujiwara, C. Iwamoto, A. Tamii, H. Akimune, C. Kadono, Y. Matsuda, T. Nakahara, T. Furuno, T. Kawabata, M. Tsumura, M. Harakeh, N. Kalantar-Nayestanaki,
Are There Nuclear Structure Effects on the Isoscalar Giant Monopole Resonance and Nuclear Incompressibility near A∼90 J. Radioanal. Nucl. Chem., vol. 305, no. 3, 2015, pp. 731–736.
https://doi.org/10.1016/j.physletb.2016.07.021
7 T. Peach, U. Garg, Y. K. Gupta, J. Hoffman, J. T. Matta, D. Patel, P. V. M. Rao, K. Yoshida, M. Itoh, M. Fujiwara, K. Hara, H. Hashimoto, K. Nakanishi, M. Yosoi, H. Sakaguchi, S. Terashima, S. Kishi, T. Murakami, M. Uchida, Y. Yasuda, H. Akimune, T. Kawabata, M. N. Harakeh, G. Colò,
Fabrication of isotopic and natural carbon foils by thermal cracking method and some issues,
Effect of ground-state deformation on isoscalar giant resonances in 28Si J. Radioanal. Nucl. Chem., vol. 305, no. 3, 2015, pp. 731–736.
https://doi.org/10.1103/PhysRevC.93.064325
8 R. Talwar, T. Adachi, G. P. A. Berg, L. Bin, S. Bisterzo, M. Couder, R. J. DeBoer, X. Fang, H. Fujita, Y. Fujita, J. Görres, K. Hatanaka, T. Itoh, T. Kadoya, A. Long, K. Miki, D. Patel, M. Pignatari, Y. Shimbara, A. Tamii, M. Wiescher, T. Yamamoto, M. Yosoi,
Probing astrophysically important states in 26Mg nucleus to study neutron sources for the s-Process
J. Radioanal. Nucl. Chem., vol. 305, no. 3, 2015, pp. 731–736.
https://doi.org/10.1103/PhysRevC.93.055803
2015
1 A.M. Krumbholz, P. von Neumann-Cosel, T. Hashimoto, A. Tamii et al.,
Low-energy electric dipole response in 120Sn
Phys. Lett. B 744, 7(2015).
http://dx.doi.org/10.1016/j.physletb.2015.03.023
2 D. Frekers et al.,
Precision evaluation of the Ga71(ν_e,e−) solar neutrino capture rate from the (3He,t) charge-exchange reaction
Phys. Rev. C 91, 034608(2015).
with editor's suggestion: http://journals.aps.org/prc/
http://dx.doi.org/10.1103/PhysRevC.91.03608
3 F. Molina, B. Rubio, Y. Fujita et al.,
T_z=-1→0 β decays of 54Ni, 50Fe, 45Cr, and 42Ti and comparison with mirror (3He,t) measurements,
Phys. Rev. C 91, 014301 (2015).
http://dx.doi.org/10.1103/PhysRevC.91.014301
4 Y. Fujita, B. Rubio, T. Adachi, B. Blank, H. Fujita, W. Gelletly, F. Molina, S.E.A. Orrigo,
Gamow-Teller excitations studied by weak and strong interactions,
Acta Physica Polonica B 46 (2015) 657-668.
http://dx.doi.org/10.5506/APhysPolB.46.657
5 H. Ejiri, J. Suhonen,
GT neutrino–nuclear responses for double beta decays and astro neutrinos,
J. Phys. G Nucl. Part. Phys., vol. 42, no. 5, may 2015, pp. 055201.
https://doi.org/10.1088/0954-3899/42/5/055201
6 D. Frekers, T. Adachi, H. Akimune, M. Alanssari, B. A. Brown, B. T. Cleveland, H. Ejiri, H. Fujita, Y. Fujita, M. Fujiwara, V. N. Gavrin, M. N. Harakeh, K. Hatanaka, M. Holl, C. Iwamoto, A. Lennarz, A. Okamoto, H. Okamura, T. Suzuki, A. Tamii,
71Ga(νe,e) ,
Phys. Rev. C, vol. 91, no. 3, mar 2015, pp. 034608.
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.91.034608
7 D. Frekers, T. Adachi, H. Akimune, M. Alanssari, B. A. Brown, B. T. Cleveland, H. Ejiri, H. Fujita, Y. Fujita, M. Fujiwara, V. N. Gavrin, M. N. Harakeh, K. Hatanaka, M. Holl, C. Iwamoto, A. Lennarz, A. Okamoto, H. Okamura, T. Suzuki, A. Tamii,
Precision evaluation of the 71Ga(νe,e) solar neutrino capture rate from the ( He 3 , t ) charge-exchange reaction
Phys. Rev. C, vol. 91, no. 3, mar 2015, pp. 034608.
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.91.034608
8 Y. Fujita, H. Fujita, T. Adachi, G. Susoy, A. Algora, C. L. Bai, G. Colò, M. Csatlós, J. M. Deaven, E. Estevez-Aguado, C. J. Guess, J. Gulyás, K. Hatanaka, K. Hirota, M. Honma, D. Ishikawa, A. Krasznahorkay, H. Matsubara, R. Meharchand, F. Molina, H. Nakada, H. Okamura, H. J. Ong, T. Otsuka, G. Perdikakis, B. Rubio, H. Sagawa, P. Sarriguren, C. Scholl, Y. Shimbara, E. J. Stephenson, T. Suzuki, A. Tamii, J. H. Thies, K. Yoshida, R. G. T. Zegers, J. Zenihiro,
High-resolution study of Gamow-Teller excitations in the Ca42(He3,t)Sc42 reaction and the observation of a “low-energy super-Gamow-Teller state
Phys. Rev. C, vol. 91, no. 6, 2015, pp. 64316.
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.91.064316
9 Y. Fujita, B. Rubio, T. Adachi, B. Blank, H. Fujita, W. Gelletly, F. Molina, S. Orrigo,
"Gamow–Teller Excitations Studied by Weak and Strong Interactions,
Acta Phys. Pol. B, vol. 46, no. 3, 2015, pp. 657.
http://www.actaphys.uj.edu.pl/vol46/abs/v46p0657
10 Y. Fujita,
弱い相互作用と強い相互作用で探るガモフ・テラー遷移",
原子核研究, vol. 60, no. 1, 2015, pp. 125.
11 Y. K. Gupta, U. Garg, J. T. Matta, D. Patel, T. Peach, J. Hoffman, K. Yoshida, M. Itoh, M. Fujiwara, K. Hara, H. Hashimoto, K. Nakanishi, M. Yosoi, H. Sakaguchi, S. Terashima, S. Kishi, T. Murakami, M. Uchida, Y. Yasuda, H. Akimune, T. Kawabata, M. N. Harakeh,
Splitting of ISGMR strength in the light-mass nucleus 24Mg due to ground-state deformation
Phys. Lett. B, vol. 748, 2015, pp. 343–346.
https://doi.org/10.1016/j.physletb.2015.07.021
12 Y. K. Gupta, U. Garg, J. T. Matta, D. Patel, T. Peach, J. Hoffman, K. Yoshida, M. Itoh, M. Fujiwara, K. Hara, H. Hashimoto, K. Nakanishi, M. Yosoi, H. Sakaguchi, S. Terashima, S. Kishi, T. Murakami, M. Uchida, Y. Yasuda, H. Akimune, T. Kawabata, M. N. Harakeh,
Corrigendum to “Splitting of ISGMR strength in the light-mass nucleus 24Mg due to ground-state deformation
Phys. Lett. B, vol. 751, dec 2015, pp. 597.
https://doi.org/10.1016/j.physletb.2015.10.057
13 T. Hashimoto, A. M. Krumbholz, P. Reinhard, A. Tamii, P. von Neumann-Cosel, T. Adachi, N. Aoi, C. A. Bertulani, H. Fujita, Y. Fujita, E. Ganioǧlu, K. Hatanaka, E. Ideguchi, C. Iwamoto, T. Kawabata, N. T. Khai, A. Krugmann, D. Martin, H. Matsubara, K. Miki, R. Neveling, H. Okamura, H. J. Ong, I. Poltoratska, V. Y. Ponomarev, A. Richter, H. Sakaguchi, Y. Shimbara, Y. Shimizu, J. Simonis, F. D. Smit, G. Süsoy, T. Suzuki, J. H. Thies, M. Yosoi, J. Zenihiro,
"Dipole polarizability of 120Sn and nuclear energy density functionals,
Phys. Rev. C, vol. 92, no. 3, sep 2015, pp. 031305.
hhttps://doi.org/10.1103/PhysRevC.92.031305
14 A. Krumbholz, P. von Neumann-Cosel, T. Hashimoto, A. Tamii, T. Adachi, C. Bertulani, H. Fujita, Y. Fujita, E. Gioglu, K. Hatanaka, C. Iwamoto, T. Kawabata, N. Khai, A. Krugmann, D. Martin, H. Matsubara, R. Neveling, H. Okamura, H. Ong, I. Poltoratska, V. Ponomarev, A. Richter, H. Sakaguchi, Y. Shimbara, Y. Shimizu, J. Simonis, F. Smit, G. Susoy, J. Thies, T. Suzuki, M. Yosoi, J. Zenihiro,
Low-energy electric dipole response in 120Sn
Phys. Lett. B, vol. 744, may 2015, pp. 7–12.
https://doi.org/10.1016/j.physletb.2015.03.023
15 H. Matsubara, A. Tamii, H. Nakada, T. Adachi, J. Carter, M. Dozono, H. Fujita, K. Fujita, Y. Fujita, K. Hatanaka, W. Horiuchi, M. Itoh, T. Kawabata, S. Kuroita, Y. Maeda, P. Navrátil, P. von Neumann-Cosel, R. Neveling, H. Okamura, L. Popescu, I. Poltoratska, A. Richter, B. Rubio, H. Sakaguchi, S. Sakaguchi, Y. Sakemi, Y. Sasamoto, Y. Shimbara, Y. Shimizu, F. D. Smit, K. Suda, Y. Tameshige, H. Tokieda, Y. Yamada, M. Yosoi, J. Zenihiro,
Nonquenched Isoscalar Spin- M1 Excitations in sd -Shell Nuclei,
Phys. Rev. Lett., vol. 115, no. 10, 2015, pp. 102501.
https://doi.org/10.1103/PhysRevLett.115.102501
16 W. W. Qu, G. L. Zhang, S. Terashima, T. Furumoto, Y. Ayyad, Z. Q. Chen, C. L. Guo, A. Inoue, X. Y. Le, H. J. Ong, D. Y. Pang, H. Sakaguchi, Y. Sakuragi, B. H. Sun, A. Tamii, I. Tanihata, T. F. Wang, R. Wada, Y. Yamamoto,
Effects of repulsive three-body force in 12C + 12C scattering at 100A MeV,
Phys. Lett. B, vol. 751, dec 2015, pp. 1–6.
https://doi.org/10.1016/j.physletb.2015.10.008
17 I. Sugai, M. Oyaizu, K. Bessho, A. Tamii,
Fabrication of isotopic and natural carbon foils by thermal cracking method and some issues,
J. Radioanal. Nucl. Chem., vol. 305, no. 3, 2015, pp. 731–736.
https://doi.org/10.1007/s10967-015-3961-4
2014
1 M. Karakoc, R.G.T. Zegers, et al.,
Gamow-Teller transitions in the A = 40 isoquintent of relevance for neutrino captures in 40Ar
Phys. Rev. C. 89, 064313 (2014).
http://dx.doi.org/10.1103/PhysRevC.89.064313
2 S.E.A. Orrigo, B. Rubio, Y. Fujita, B. Blank et al.,
Observation of the β-Delayed γ-Proton Decay of 56Zn and its Impact on the Gamow-Teller Strength Evaluation
Phys. Rev. Lett. 112, 222501 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.222501
3 I. Poltoratsuka et al.,
Fine structure of the isovector giant dipole resonance in 208Pb: Characteristic scales and level densities
Phys. Rev. C 89, 054322 (2014).
http://dx.doi.org/10.1103/PhysRevC.89.054322
4 Y. Fujita, H. Fujita et al.,
Phys. Rev. Lett. 112, 112502 (2014).
Observation of Low- and High-energy Gamow-Teller Phonon Excitations in Nuclei:
http://dx.doi.org/10.1103/PhysRevLett.112.112502
5

 

A. Tamii, P. von Neumann-Cosel and I. Poltoratska
Euro. Phys. J. A. 50, 28 (2014).
Electric dipole response of 208Pb probed by proton inelastic scattering: constraints on the neutron skin thickness and symmetry energy
http://dx.doi.org/10.1140/epja/i2014-14028-7
6 A. Tamii and J. Zenihiro
Butsuri 69, 6 (2014). 日本物理学会誌 69号6頁2014年.
Neutron Skin and Nuclear Matter Equation of State
7 C.L. Bai, H. Sagawa, G. Col`o, Y. Fujita, H.Q. Zhang, X.Z. Zhang, and F.R. Xu,
Low-energy collective Gamow-Teller states and isoscalar pairing interaction,
Phys. Rev. C 90 (2014) 054335 1-12.
http://dx.doi.org/10.1103/PhysRevC.90.054335
8 S.E.A. Orrigo et al.,
Beta decay of the exotic Tz=-2 56Zn nucleus and half-life of various proton-rich Tz=-1 nuclei,
Acta Physica Polonica B 45 (2014) 355-362.
http://dx.doi.org/10.5506/APhysPolB.45.355
9 B. Rubio et al.,
Beta Decay Study of the Tz=-2 56Zn Nucleus and the Determination of the Half-Lives of a Few fp-shell Nuclei
Nuclear Data Sheets 120 (2014) 37-40.
http://dx.doi.org/10.1016/j.nds.2014.06.135  
2013
1 M. Itoh, S. Kishi, H. Sakaguchi et al.,
Isoscalar giant resonace strengths in 32S and possible excitation of superdeformed and 28Si+α cluster bandheads
Phys. Rev. C 88, 064313 (2013).
http://link.aps.org/doi/10.1103/PhysRevC.88.064313
2 H. Fujita, Y. Fujita, et al.,
Phys. Rev. C88, 054329 (2013)
Isospin mixing of the isobaric analog state studied in a high-resolution 56Fe( 3He,t) 56Co reaction
http://prc.aps.org/abstract/PRC/v88/i5/e054329
3 Y. Fujita, T. Adachi, H. Fujita et al.,
Phys. Rev. C 88, 014308 (2013)
High-resolution study of Tz=+2→+1 Gamow-Teller transitions in the 44Ca(3He,t)44Sc reaction
http://link.aps.org/doi/10.1103/PhysRevC.88.014308
4 E. Ganioğlu, H. Fujita, Y. Fujita et al.
Phys. Rev. C 87, 014321 (2013)
High-resolution study of Gamow-Teller transitions in the 47Ti(3He, t)47V reaction
http://link.aps.org/doi/10.1103/PhysRevC.87.014321
5 H. Ejiri, D. Frekers,
Spin dipole nuclear matrix elements for double beta decay nuclei by charge-exchange reactions,
J. Phys. G Nucl. Part. Phys., vol. 43, no. 11, nov 2016, pp. 11LT01.
https://doi.org/10.1088/0954-3899/43/11/11LT01
2012
1 J. H. Thies et al.
Phys. Rev. C 86, 054323 (2012)
High-resolution 96Zr(3He,t) experiment and the matrix element for double-β decay
http://link.aps.org/doi/10.1103/PhysRevC.86.054323
2 J. H. Thies et al.,
Phys. Rev. C 86, 044309 (2012)
High-resolution $^{100}$Mo$(^3$He,$t)^{100}$Tc charge-exchange experiment and the impact on double-$\beta$ decays and neutrino charged-current reactions
http://link.aps.org/doi/10.1103/PhysRevC.86.044309
3 C. Iwamoto, H. Utsunomiya, A. Tamii et al. Phys. Rev. Lett. 108, 262501(2012)
Separation of Pygmy Dipole and M1 Resonances in 90Zr by a High-Resolution Inelastic Proton Scattering Near 0°
http://link.aps.org/doi/10.1103/PhysRevLett.108.262501
4 J.H. Thies et al.
Phys. Rev. C86, 014304(2012)
The (3He,t) reaction on 76Ge, and the double-β-decay matrix element
http://link.aps.org/doi/10.1103/PhysRevC.86.014304
5 Y. Iwamoto et al.
Nucl. Instrum. and Meth. in Phys. Res. A. 690, 10(2012)
Measurements and Monte Carlo calculations of forward-angle secondary-neutron-production cross-sections for 137 and 200 MeV proton-induced reactions in carbon
http://dx.doi.org/10.1016/j.nima.2012.06.038
6 P. Puppe et al.
Phys. Rev. C 86, 044603 (2012)
High resolution (He-3,t) experiment on the double-beta decaying nuclei Te-128 and Te-130
http://link.aps.org/doi/10.1103/PhysRevC.86.044603
7 H. Matsubara, A. Tamii et al.
Nucl. Instrum. and Meth. in Phys. Res. A. 678, 122(2012)
Wide-window gas target system for high resolution experiment with magnetic spectrometer
http://dx.doi.org/10.1016/j.nima.2012.03.005
8 M. Sasano et al.
Phys. Rev. C 85, 061301(R) (2012)
Gamow-Teller transition strengths in the intermediate nucleus of the 116Cd double- beta decay by the 116Cd(p,n) 116In and 116Sn(n,p) 116In reactions at 300 MeV
http://link.aps.org/doi/10.1103/PhysRevC.85.061301
9 I. Poltoratska, P. von Neumann-Cosel, A. Tamii et al.
Pygmy dipole resonance in 208Pb
Phys. Rev. C 85, 041304(R) (2012)
http://link.aps.org/doi/10.1103/PhysRevC.85.041304
10 T. Adachi. Y. Fujita et al.
Phys. Rev. C 85, 024308 (2012)
High-resolution study of Gamow-Teller transitions via the 54Fe(3He,t)54Co reaction
http://link.aps.org/doi/10.1103/PhysRevC.85.024308
16 Y. Shimbara et al.,
High-resolution study of Gamow-Teller transitions with the 37Cl(3He,t)37Ar reaction
Phys. Rev. C 86 (2012) 024312 1-15.
http://dx.doi.org/10.1103/PhysRevC.86.024312
17 Y. Fujita, H. Fujita B. Rubio, W. Gelletly, and B. Blank,
Gamow-Teller Transitions - a mirror reflecting nuclear structure,
Acta Physica Polonica B 43 (2012) 153-166.
http://dx.doi.org/10.5506/APhysPolB.43.153

 

Kento Inaba Kyoto University, Japan 2022 Search for α condensed states in 13C using α inelastic scattering
Kevin B Howard University of Notre Dame, USA 2019 Structure effects on the giant monopole resonance and determinations of the nuclear incompressibility
Yuni Watanabe The University of Tokyo, Japan 2019 Spectroscopy of deeply bound pionic states via 124Sn(p,2He) reaction
Reen Mandeep Singh Okayama University, Japan 2019 Study of hadronic and electromagnetic decays of giant resonances in 12C using (p,p′γ) reaction
Iwa Ou Okayama University, Japan 2018 Study of γ rays emitted from giant resonance of 12C and 16O
Satoshi Adachi Kyoto University, Japan 2018 Systemtic analysis of inelastic alpha scattering off self-conjugate A=4n nuclei
Segej Bassauer TU Darmstadt, Germany 2018 Systematics of the electric dipole response in stable tin isotopes (ongoing working title)
Shohei Araki Kyusyu University, Japan 2017 重陽子入射核反応からの二次中性子及びガンマ線生成に関する研究
David Matters US Air Force Institue of Technology, USA 2017 "Nuclear Structure of 186Re”
Jonathan Entwisle The University of Manchester, USA 2016
GUO Chen Lei Beihang University, CHINA 2016
Rashi Talwar University of Notre Dame, USA 2015
Darshana C. Patel University of Notre Dame, USA 2015
Gulfem Susoy Istanbul University, Turkey 2015 April Evaluation of Gamow-Teller Transition Strengths in Vanadium Isotopes
Annika LENNARZ Univ. Muenster, Germany 2015
Jonny Birkhan TU-Darmstadt, Germany 2015
QU Wei Wei Beihang University, CHINA 2015
Andreas Krugmann TU-Darmstadt, Germany 2014 Electric dipole polarizability and spin M1 strength from 48Ca(p p') data at 0 degrees
Anna Maria TU-Darmstadt, Germany 2014 Low-energy electric dipole response of 120Sn from polarized proton scattering
Darshana C. TU-Darmstadt, Germany 2014 Low-energy electric dipole response of 120Sn from polarized proton scattering
Juzo Zenihiro Kyoto University, Japan 2011 Neutron density distributions of 204,206,208Pb deduced via proton elastic scattering at Ep = 295 MeV
Yusuke Yasuda Kyoto University, Japan 2011 Spectroscopic factors and strength distributions for the deeply bound orbitals in 40Ca obtained from the (p,2p) reaction at 392 MeV
Iryna Poltoratska TU-Darmstadt, Germany 2011 Complete dipole response in 208Pb from high-resolution polarized proton scattering at 0 degree
Hiroaki Matsubara Osaka University, Japan 2010 Isoscalar and isovector spin-M1 transitions from the even-even, N=Z nuclei across the sc-shell regioin
Satoru Terashima Kyoto University, Japan 2008 Systematic study of neutron density distributions of Sn isotopes by proton elastic scattering
Masaki Sasano University of Tokyo, Japan 2008 Study of intermediate states of the two neutrino double beta decay via the (p n) and (n, p) reactions at 300 MeV
Makoto Uchida Kyoto University, Japan 2003 Isoscalar giant dipole resonance and nuclear incompressibility

〒567-0047 大阪府茨木市美穂ヶ丘10-1

©2015 Research Center for Nuclear Physics, Osaka University