Cyclotoron Facility > About Cyclotron Facility > Beamlines and experimental devices > N0 Course

 

N0 Course

  • Introduction
  • Specification
  • Layout
  • Recent Results
  • Publication List
  • PhD Receipients
 

The N0 couse is a neutron TOF facility with flight path length of 100 m at maximum, offering opportunities for high-precision experiments on nuclear reactions associated with neutron emissions and absorptions in the energy range from a few MeV up to 400 MeV. Anguler distribution measurements are available with use of a movable target system.

The N0 course is equipped with a neutron polarimeter NPOL3 for measurement of the nuclear polarization transfer observables in the (p,n) reactions with a spin polarized proton beam. NPOL3 consists of position-sensitive organic scintillators covering an area of 1 m × 1 m. The effective analyzing powers Ay(eff.) are typically 0.37-0.43 and 0.13-0.15 for (n,n) and (n,p) channels, respectively.

The N0 course is one of the world-brightest sources of quasi-monoenergetic MeV neutrons. It has been used for studies of the cross sections of neutron-induced nuclear reactions, neutron shieldings, responses of neutron detectors, and so on. Typical intensity and energy spread for the zero-degree component of the 387 MeV neutron beam are (0.9±0.15)×1010 /sr/μC and 0.75% (FWHM), respectively.

For more technial information, please refere to the following papers.

* H. Sakai et al., Nucl. Instrum. Meth. Phys. Res. A 369, 120 (1996).
Facility for the (p, n) polarization transfer measurement

Continuous proton beams with energies of a few MeV to 392 MeV are delivered to the N0 course with beam current of up to 1 micro-A, and impinge upon targets for (p,n) reactions. Proton polarization of up to 70% is available. Pulsed beam with a time interval of up to 1 micro-sec can be generated by using a beam chopper at the cost of the beam intensity. The flight path length of the neutrons can be changed from 10 m to 100 m using a handcart for a detector support. The time resolution for neutrons is typically 0.7 ns (FWHM) including the time spread of the incident proton beam of 200 ps and the thickness effects of the neutron production target and the neutron detector. Angular distributions of the emitted neutrons can be measured at the angle from 0 to 25 degree with use of a movable target system. The neutron polarimeter NPOL3 is available for the measurement of the nuclear polarization transfer observables in the (p,n) reactions. NPOL3 consists of position-sensitive organic scintillators covering an area of 1 m × 1 m. The effective analyzing powers Ay(eff.) are typically 0.37-0.43 and 0.13-0.15 for (n,n) and (n,p) channels, respectively. The double scattering efficiencies are of the orders of 10-4 and 10-3 for (n,n) and (n,p) channels, respectively. Quasi-monoenergetic neutrons are produced via the 7Li(p,n)7Be reaction. Typical intensity and energy spread of the zero-degree component of the 387 MeV neutron beam are (0.95±-0.15)×1010 /sr/μC and 0.75% (FWHM), respectively.

For more technial information, please refere to the following papers.

* H. Sakai et al., Nucl. Instrum. Meth. Phys. Res. A 369, 120 (1996).
Facility for the (p, n) polarization transfer measurement

 

 

1. Gamow-Teller and spin-dipole strengths of 208Pb

The cross sections, analyzing powers and complete sets of polarization transfer observables for 208Pb(p,n) reaction were measured at a bombarding energy of 296 MeV. A multipole decomposition technique was applied to the data to extract the Gamow-Teller (GT) and spin-dipole (SD) components from the continuum. The polarization observables were also used, for the first time, to separate the SD components into different spin-parity transfer (ΔJπ=0-, 1-, and 2-) contributions. A significant strength with ΔJπ=1+ is identified in the continuum beyond the GT giant resonance, which is due to configuration mixing effects and the isovector spin monopole (IVSM) contribution. The SD strength distributions were clearly dependent on ΔJπ,which is reasonably reproduced by Hartree-Fock (HF) plus random phase approximation (RPA) calculations that include the Skyrme interaction with tensor components.

Reference:

T. Wakasa et al., "Complete sets of polarization transfer observables for the 208Pb(p,n) reaction at 296 MeV and Gamow-Teller and spin-dipole strengths for 208Pb", Physical Review C85, 064606 (2012).

 

2. Measurement of the neutron-induced reaction cross sections for chromium and yttrium at 197 MeV

Reaction cross sections for Cr and Y induced by neutrons at 197 MeV were measured by using a quasi-monoenergetic neutron beam generated with the 7Li(p,n) reaction. Cr and Y samples were irradiated on the two angles of 0° and 25° relative to the axis of the primary proton beam. The measured cross section data in the natCr(n,x) and 89Y(n,x) reactions are found to be consistent with the cross section data for the same target materials with 287 and 386 MeV neutrons in the previous work. The obtained results are compared to the JENDL high-energy file and the literature proton values, respectively, and it was suggested that the boundary energy where the calculation codes are replaced in the current JENDL-HE evaluations will shift to a new energy.

Reference:

S. Sekimoto et al., "Measurements of Cross Sections for Neutron-induced Reactions on Chromium and Yttrium Targets at 197 MeV", Nuclear Data Sheets 119, 197-200 (2014).

 

3. Characterization of quasi-monoenergetic neutron source using 137, 200, 246 and 389 MeV 7Li(p,n) reactions

The neutron energy spectra of a quasi-monoenergetic 7Li(p,n) neutron source with 137, 200, 246 and 389 MeV protons were measured at seven angles (0°, 5°, 10°, 15°, 20°, 25° and 30°), using a time-of-flight (TOF) method employing organic scintillators NE213. The energy spectra of the source neutrons were precisely deduced down to 2 MeV at 0° and 10 MeV at other angles. Neutron energy spectra below 100 MeV at all angles were comparable, but the shapes of the continuum above 150 MeV changed considerably with the angle. It was found that subtracting the dose equivalent at larger angles (21° for 389 MeV, 25° for 246 MeV and 26° for 200 MeV) from the 0° data almost eliminates the continuum component. This method has potential to eliminate problems associated with continuum correction for high-energy neutron monitors.

Reference:

Y. Iwamoto, M. Hagiwara, H. Iwase, H. Yashima, D. Satoh, T. Matsumoto, A. Masuda, C. Pioch, V. Mares, T. Shima, A. Tamii, K. Hatanaka and T. Nakamura, "Characterization of quasi-monoenergetic neutron source using 137, 200, 246 and 389 MeV 7Li(p,n) reactions", Progress in Nuclear Science and Technology 4, 657-660 (2014).

2017
1 S. Araki, Y. Watanabe, M. Kitajima, H. Sadamatsu, K. Nakano, T. Kin, Y. Iwamoto, D. Satoh, M. Hagiwara, H. Yashima, T. Shima,
Systematic measurement of double-differential neutron production cross sections for deuteron-induced reactions at an incident energy of 102MeV Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 842, jan 2017, pp. 62–70.
https://doi.org/10.1016/j.nima.2016.10.043
2 T. Kawabata, Y. Fujikawa, T. Furuno, T. Goto, T. Hashimoto, M. Ichikawa, M. Itoh, N. Iwasa, Y. Kanada-En'yo, A. Koshikawa, S. Kubono, E. Miyawaki, M. Mizuno, K. Mizutani, T. Morimoto, M. Murata, T. Nanamura, S. Nishimura, S. Okamoto, Y. Sakaguchi, I. Sakata, A. Sakaue, R. Sawada, Y. Shikata, Y. Takahashi, D. Takechi, T. Takeda, C. Takimoto, M. Tsumura, K. Watanabe, S. Yoshida
Time-Reversal Measurement of the p−Wave Cross Sections of the 7Be(n,α) 4He Reaction for the Cosmological Li Problem,
Phys. Rev. Lett., vol. 118, no. 5, feb 2017, pp. 052701.
https://doi.org/10.1103/PhysRevLett.118.0527011
3 A. Masuda, T. Matsumoto, Y. Iwamoto, M. Hagiwara, D. Satoh, T. Sato, H. Iwase, H. Yashima, Y. Nakane, J. Nishiyama, T. Shima, A. Tamii, K. Hatanaka, H. Harano, T. Nakamura,
Applicability of the two-angle differential method to response measurement of neutron-sensitive devices at the RCNP high-energy neutron facility
Nucl. Instruments Methods
Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 849, mar 2017, pp. 94–101.
https://doi.org/10.1016/j.nima.2016.12.031
2015
1 Y. Iwamoto, M. Hagiwara, D. Satoh, S. Araki, H. Yashima, T. Sato, A. Masuda, T. Matsumoto, N. Nakao, T. Shima, T. Kin, Y. Watanabe, H. Iwase, T. Nakamura,
Characterization of high-energy quasi-monoenergetic neutron energy spectra and ambient dose equivalents of 80–389MeV 7Li(p,n) reactions using a time-of-flight method Nucl. Instruments Methods
Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 804, dec 2015, pp. 50–58
https://doi.org/10.1016/j.nima.2015.09.045
2 S. Sekimoto, S. Okumura, H. Yashima, Y. Matsushi, H. Matsuzaki, H. Matsumura, A. Toyoda, K. Oishi, N. Matsuda, Y. Kasugai, Y. Sakamoto, H. Nakashima, D. Boehnlein, R. Coleman, G. Lauten, A. Leveling, N. Mokhov, E. Ramberg, A. Soha, K. Vaziri, K. Ninomiya, T. Omoto, T. Shima, N. Takahashi, A. Shinohara, M. W. Caffee, K. C. Welten, K. Nishiizumi, S. Shibata, T. Ohtsuki,
Measurements of production cross sections of 10Be and 26Al by 120GeV and 392MeV proton bombardment of 89Y, 1159Tb, and natCu targets
Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 361, 2015, pp. 685–688.
https://doi.org/10.1016/j.nimb.2015.08.001
2014
1 H. Yashima, S. Sekimoto, K. Ninomiya, Y. Kasamatsu, T. Shima, N. Takahashi, A. Shinohara, H. Matsumura, D. Satoh, Y. Iwamoto, M. Hagiwara, K. Nishiizumi, M.W. Caffee and S. Shibata,
"Measurements of the neutron activation cross sections for Bi and Co at 386 MeV”,
Rad. Prot. Dosim. 161, 139-143 (2014).
2 Y. Iwamoto, M. Hagiwara, H. Iwase, H. Yashima, D. Satoh, T. Matsumoto, A. Masuda, C. Pioch, V. Mares, T. Shima, A. Tamii, K. Hatanaka and T. Nakamura, “Characterization of quasi-monoenergetic neutron source using 137, 200, 246 and 389 MeV 7Li(p,n) reactions”, Progress in Nuclear Science and Technology 4, 657-660 (2014).
3 S. Sekimoto, H. Suzuki, H. Yashima, K. Ninomiya, Y. Kasamatsu, T. Shima, N. Takahashi, A. Shinohara, H. Matsumura, M. Hagiwara, K. Nishiizumi, M.W. Caffee and S. Shibata, “Measurements of Cross Sections for Neutron-induced Reactions on Chromium and Yttrium Targets at 197 MeV”, Nuclear Data Sheets 119, 197-200 (2014).
4 T. Matsumoto, A. Masuda, J. Nishiyama, H. Harano, H. Iwase, Y. Iwamoto, M. Hagiwara, D. Satoh, H. Yashima, Y. Nakane, H. Nakashima, Y. Sakamoto, C. Pioch, V. Mares, A. Tamii, K. Hatanaka and T. Nakamura,
"Measurement of neutron energy spectra behind shields for quasi-monoenergetic neutrons generated by 246 MeV and 389 MeV protons using a Bonner sphere spectrometer",
Progress in Nuclear Science and Technology 4, 332-336 (2014).
2013
1 V. Mares, C. Pioch, W. Ruhm, H. Iwase, Y. Iwamoto, M. Hagiwara, D. Satoh, H. Yashima, T. Itoga, T. Sato, Y. Nakane, H. Nakashima, Y. Sakamoto, T. Matsumoto, A. Masuda, H. harano, J. Nishiyama, C. Theis, E. Feldbaumer, J. Lukas, A. Tamii, K. Hatanaka and T. Nakamura, "Neutron Dosimetry in Quasi-Monoenergetic Fields of 244 and 387 MeV", IEEE Trans. Nucl. Sci. 60, 299-304 (2013).
2 S. Sekimoto, T. Omoto, H. Joto, T. Utsunomiya, H. Yashima, K. Ninomiya, K.C. Welten, M.W. Caffee, Y. Matsushi, H. Matsuzaki, R. Nakagaki, T. Shima, N. Takahashi, A. Shinohara, H. Matsumura, D. Satoh, Y. Iwamoto, M. Hagiwara, K. Nishiizumi and S. Shibata,
"Measurements of cross sections for production of light nuclides by 300 MeV proton bombardment of Cu and Y",
Nuclear Instruments and Methods in Physics Research B294, 475-478 (2013).
2012
1 Y. Iwamoto, M. Hagiwara, T. Matsumoto, A. Masuda, H. Iwase, H. Yashima, T. Shima, A. Tamii and T. Nakamura,
"Measurements and Monte Carlo calculations of forward-angle secondary-neutron-productioncross-sections for 137 and 200 MeV proton-induced reactions in carbon",
Nuclear Instruments and Methods in Physics Research A690, 10-16 (2012).
2 A. Masuda, T. Matsumoto, H. Harano, J. Nishiyama, Y. Iwamoto, M. Hagiwara, D. Satoh, H. Iwase, H. Yashima, T. Nakamura, T. Sato, T. Itoga, Y. Nakane, H. Nakashima, Y. Sakamoto, C. Theis, E. Feldbaumer, L. Jaegerhofer, C. Pioch, V. Mares, A. Tamii and K. Hatanaka,
"Response measurement of Bonner sphere spectrometer for high energy neutrons",
IEEE Trans. Nucl. Sci. 59, 161-166 (2012).
2011
1 Y. Iwamoto, M. Hagiwara, D. satoh et. al.,
"Quasi-monoenergetic neutron energy spectra for 246 and 389 MeV 7Li(p,n) reactions at angles from 0° to 30°",
Nuclear Instruments and Methods in Physics Research A629, 43-49 (2011).
2 S. Sekimoto, T. Utsunomiya, H. Yashima, K. Ninomiya, T. Omoto, R. Nakagaki, T. Shima, N. Takahashi, A. Shinohara, N. Kinoshita, H. Matsumura, D. Satoh, Y. Iwamoto, M. Hagiwara, K. Nishiizumi and S. Shibata.
"Measurement of neutron cross sections for yttrium and terbium at 287 MeV".
Prog. Nucl. Sci. Tech., 1, 89?93 (2011).
3 K. Ninomiya, T. Omoto, R. Nakagaki, N. Takahashi, A. Shinohara, S. Sekimoto, T. Utsunomiya, H. Yashima, S. Shibata, T. Shima, N. Kinoshita, H. Matsumura, M. Hagiwara, Y. Iwamoto, D. Satoh, M.W. Caffee, K.C. Welten, M. Imamura and K. Nishiizumi,
"Cross sections of 7Be, 22Na and 24Na for geochemical and cosmochemical important elements by monoenergetic 287 and 370 MeV neutrons",
Proc. Radiochim. Acta, 1, 123-126 (2011).
4 H. Yashima, S. Sekimoto, T. Utsunomiya, K. Ninomiya, T. Omoto, R. Nakagaki, T. Shima, N. Takahashi, A. Shinohara, H. Matsumura, D. Satoh, Y. Iwamoto, M. Hagiwara, K. Nishiizumi and S. Shibata,
"Measurements of the neutron activation cross sections for Bi at 287 and 370 MeV",
Proc. Radiochim. Acta, 1, 135-139 (2011).
2010
1 Y. Iwamoto, D. Satoh, M. Hagiwara, H. Yashima, Y. Nakane, A. Tamii, H. Iwase, A. Endo, H. Nakashima, Y. Sakamoto, K. Hatanaka and K. Niita,
"Measurements and Monte Carlo calculations of neutron production cross sections at 180° for the 140 MeV proton incident reactions on carbon, iron, and gold,"
Nuclear Instruments and Methods in Physics Research A620, 484-489 (2010).
2009
1 K. Yako, M. Sasano, K. Miki, H. Sakai, M. Dozono, D. Frekers, M.B. Greenfield, K. Hatanaka, E. Ihara, M. Kato, T. Kawabata, H. Kuboki, Y. Maeda, H. Matsubara, K. Muto, S. Noji, H. Okamura, T.H. Okabe, S. Sakaguchi, Y. Sakemi, Y. Sasamoto, K. Sekiguchi, Y. Shimizu, K. Suda, Y. Tameshige, A. Tamii, T. Uesaka, T. Wakasa and H. Zheng,
"Gamow-Teller Strength Distributions in 48Sc by the 48Ca(p,n) and 48Ti(n,p) Reactions and Two-Neutrino Double-Beta Decay Nuclear Matrix Elements",
Physical Review Letters 103, 012503 (2009).
2 M. Sasano, H. Sakai, K. Yako, T. Wakasa, S. Asaji, K. Fujita, Y. Fujita, M.B. Greenfield, Y. Hagihara, K. Hatanaka, T. Kawabata, H. Kuboki, Y. Maeda, H. Okamura, T. Saito, Y. Sakemi, K. Sekiguchi, Y. Shimizu, Y. Takahashi, Y. Tameshige and A. Tamii,
"Gamow-Teller unit cross sections of the (p,n) reaction at 198 and 297 MeV on medium-heavy nuclei",
Physical Review C79, 024602 (2009).
2008
1 Y. Iwamoto, S. Taniguchi, N. Nakao, T. Itoga, H. Yashima, T. Nakamura, D. Satoh, Y. Nakane, H. Nakashima, Y. Kirihara, M. Hagiwara, H. Iwase, K. Oishi, A. Tamii, and K. Hatanaka,
"Measurement of thick target neutron yields at 0° bombarded with 140, 250 and 350 MeV protons",
Nuclear Instruments and Methods in Physics Research A593, 298-306 (2008).
2 E. Ihara, T. Wakasa, M. Dozono, K. Hatanaka, T. Imamura, M. Kato, S. Kuroita, H. Matsubara, T. Noro, H. Okamura, K. Sagara, Y. Sakemi, K. Sekiguchi, K. Suda, T. Sueta, Y. Tameshige, A. Tamii, H. Tanabe and Y. Yamada,
"Cross sections and analyzing powers for (p,n) reactions on 3He and 4He at 346 MeV",
Physical Review C78, 024607 (2008).
3 T. Wakasa, E. Ihara, M. Dozono, K. Hatanaka, T. Imamura, M. Kato, S. Kuroita, H. Matsubara, T. Noro, H. Okamura, K. Sagara, Y. Sakemi, K. Sekiguchi, K. Suda, T. Sueta, Y. Tameshige, A. Tamii, H. Tanabe and Y. Yamada,
"Complete set of polarization transfer coefficients for the 3He(p,n) reaction at 346 MeV and 0 degrees",
Physical Review C77, 054611 (2008).
 

 

Shohei ARAKI Kyusyu University 2016 Study of Mechanism of (14N,12B) Reactions at Intermediate Energy-Origin of Large Spin-Polarization of Projectile-Like Fragments

〒567-0047 大阪府茨木市美穂ヶ丘10-1

©2015 Research Center for Nuclear Physics, Osaka University